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Background

The Heisenberg Group is a 2n`1 dimensional manifold denoted Hn “ pR2n`1,˚,dccq, where ˚
is the group operation and dcc is the Carnot–Carathéodory distance. This is a non commutative
group with a natural anisotropic dilations δrpx,y, tq :“ prx,ry,r2tq and whose balls are not con-
vex (see Figure 1(a)).
The topological dimension of Hn is 2n` 1, while its Hausdorff dimension with respect to the
Carnot-Caratheodory distance is 2n` 2; such dimensional difference leads to the existence of
regular surfaces in the Heisenberg sense that are fractal in the Euclidean sense (see [3]).
The Lie algebra of the left invariant vector fields of Hn has a standard orthonormal basis
tX j “ Bx j ´

1
2y jBt , Yj “ By j `

1
2x jBtu j“1,...,n, called horizontal because it spans the so-called

horizontal bundle; it also holds the core property that rX j,Y js “ Bt “: T for each j “ 1, . . . ,n,
where T is called the vertical direction. This division between horizontal and vertical quali-
ficates the Heisenberg Group as Carnot group of step 2. One can notice how the horizontal
subbundle changes inclination at every point (see Figure 1(b)), allowing movement from each
point to each point following only horizontal paths.
With a dual argument, one can associate at these vector fields the corresponding differential
forms respectively: dx j’s and dy j’s for X j’s and Yj’s, and θ :“ dt´ 1

2
řn

j“1px jdy j´ y jdx jq for
T . They also divide in horizontal and vertical as before.

My Research

My research concerns the study of currents on the Heisenberg Group Hn, which naturally in-
volves H-regular surfaces and Rumin cohomology. These three aspects are deeply related but
also wide enough to allow to study them separately.
The aim is to prove compactness theorems in the Heisenberg group for currents, with the final
goal to solve a mass-minimality problem given a fixed boundary (generically known as Plateau
Problem). The compactness theorem will need two preliminary results, a deformation theorem
and a closure theorem.

˚PhD student, University of Helsinki, Finland. giovanni.canarecci@helsinki.fi



(a) Unit ball in H1 (b) Horizontal tangent space in H1

Figure 1: First Heisenberg Group H1.1

The strategy is to first build a grid in Hn whose faces are 1-codimensional H-regular surfaces.
Then create a deformation theorem to describe how a current can be approximated by currents
supported on the grid. Finally prove a closure result for such approximations (see chapter 5 in
[4]).

Rumin cohomology

A natural cohomology for the Heisenberg group is the Rumin cohomology, from which derives
also the definition of currents (see [6] and 5.8 in [2]).
Take Ωk as the set of all k-differential forms in Rk and conside the sets:

• Ik “ tα^θ `β ^dθ { α PΩk´1, β PΩk´2u

• Jk “ tα PΩk { α^θ “ 0, α^dθ “ 0u

The Rumin complex, due to Rumin in [6], is given by

0Ñ RÑC8
dQ
Ñ

Ω1

I1
dQ
Ñ ¨¨ ¨

dQ
Ñ

Ωn

In
D
Ñ Jn`1 dQ

Ñ ¨¨ ¨
dQ
Ñ J2n`1

Ñ 0

where d is the standard differential operator and, for k ă n, we have

dQprαsI˚q :“ rdαsI˚,

while, for k ě n,
dQ :“ d|J˚ .

Finally, D is a 2nd-order differential operator whose presence reflects the difference between the
topological and Hausdorff dimensions of the space.

1pictures shown with permission of the authors.



Rumin forms are then defined as compactly supported on an open set U and their sets are
denoted by

Dk
HpUq :“

#

Ωk

Ik , if k ď n
Jk , if k ą n

As an example, in the first Heisenberg group H1 the Rumin complex is:

0Ñ R
dQ
ÑD1

HpUq
D
ÑD2

HpUq
dQ
ÑD3

HpUq Ñ 0

with D1
HpUq “ spantdx,dyu, D2

HpUq “ spantdx^θ ,dy^θu and D3
HpUq “ spantdx^dy^θu.

When k ą 1, examples becomes much more complicated.

While studying these differential operators, one can naturally ask whether they commute with
the pullback of some functions. It turns out that the answer is positive.
Consider f : Hn ÑHn and call if contact map iff

f˚ pspantX1, . . . ,Xn,Y1, . . . ,Ynuq Ď spantX1, . . . ,Xn,Y1, . . . ,Ynu

or, equivalently,
ðñ f ˚θ “ λθ .

Theorem 0.1. Consider a contact map f : Hn ÑHn. We have that

f ˚dQ “ dQ f ˚ for k ‰ n

and
f ˚D“ D f ˚ for k “ n.

Namely, the pullback of a contact map f commutes with the differental operators of the Rumin
complex.

One can also notice that pushforward and pullback of contact forms in the Heisenberg group
are quite interesting objects in their behaviour. It is lengthy but possible to write explicit push-
forward and pullback formulas in the Rumin notation in H1.

Currents

Currents are linear functionals on differential forms and can be associated, under correct hypo-
theses, to surfaces. It is then possible to study minimality problems on them by measuring the
mass of the associated surface. In the Euclidean space Rn, Federer [1] used this association to
prove the compactness theorem for currents, namely that the space of currents with compact
support and with their mass and the mass of their boundaries uniformly bounded, is compact.
This leads immediately to the existence of area-minimizing currents (indeed the solution to the
Plateau Problem). My aim is to prove similar theorems for the Heisenberg Group Hn, with its



intrinsic geometrical constrains.

For 1 ď k ď n, one can then define H´ k-dimensional currents (DH,kpUq) as continuous linear
functionals : Dk

HpUq Ñ R, and H´ k-codimensional currents (DH,2n`1´kpUq) as continuous
linear functionals : D2n`1´k

H pUq Ñ R.
To associate these currents to surface, that we will call H-regular, we need quite strong hypo-
theses. Before that, we can consider much less hypotheses and work with currents representable
by integration. Call H

Ź

k the set of integrable k-vector (for precise definition see [2]). Then we
can define:

Definition 0.2 (representable by integration). 1ď kď 2n. Let S PDH,kpUq and consider U PHn

open.
S is representable by integration ðñ

DµS a Radon measure over U and DÝÑS : U Ñ H
Ź

k µS-measurable s.t.
∥∥∥ÝÑS pxq∥∥∥ “ 1 for

µS-a.a. x PU and

Spωq “
ż

xωpxq|ÝÑS pxqydµSpxq @ω PDk
HpUq.

If S is such, we notationally write
S “ÝÑS ^µS.

This definition is justified by an equivalence theorem, whose Riemannian version is due to
Federer:

Theorem 0.3 (Equivalence Theorem). Let U ĎHn open. Let S PDH,kpUq.

‖S‖p f q ă 8 @ f PC0
H,0pUq

`
ðñ

DµS a Radon measure over U and DÝÑS : U Ñ H
Ź

m µS-measurable s.t.
∥∥∥ÝÑS pxq∥∥∥ “ 1 for µS-a.a.

x PU and
Spωq “

ż

xωpxq|ÝÑS pxqydµSpxq @ω PDk
HpUq,

where
Y “

H

ľk
, C0

H,0pUq
`
“ t f PC0

H,0pUq { f ě 0u

and
‖S‖p f q “ sup

ϕPC8pU,Y q, ‖ϕ‖Yď f
Spϕq.

As in the Riemannian case, it is possible to obtain some properties for such currents. Other
properties, that depend more on the geometrical structure of the ambient set, are still under
investigation. They are also related to “slicing theory” in the Heisenberg group, that will be
needed for the closure result for the deformation theorem.



H-regular surfaces

To associate currents to surfaces (we state here only the definition in the codimensional case),
first call S a H-regular k-codimensional surface in Hn, 1 ď k ď n, if and only if S is locally
the level set of a

“

C1
H
‰k-function f : U Ñ Rk with the horizontal gradient of each component

∇H fi ‰ 0 for i“ 1, . . . ,k. Then (proposition 5.15 in [2]) every such S, oriented by a tangent vec-
tor fieldÝÑS , defines a H´k-codimensional current [[S]] by rrSsspωq “

ş

Sx
ÝÑS |ωydS2n`2´k

8 , where
ω P D2n`1´k

H pUq and dS2n`2´k
8 is a spherical Hausdorff measure. With these hypotheses, one

can identify the surface S and the current rrSss. Finally, for all currents one can define a mass as
MpSq :“ sup

}ωx}ď1
Spωq.

It is important to notice that the boundary of a current is also a current and that, in the first Heis-
enberg group H1, a 1-codimensional current S : D2

HpUq Ñ R has a boundary BS : D1
HpUq Ñ R

that is not a codimensional current anymore, but instead a 1-dimensional current, by definition
of k-currents, 1 ď k ď n, and of the Rumin cohomology. Then, for S to be meaningful, BS will
need to have only horizontal tangent vectors and this restricts considerably the amount of cur-
rents one can use.
On the other hand, in Hn with n ě 2, a 1-codimensional current S : D2n

H pUq Ñ R has a bound-
ary BS : D2n´1

H pUq Ñ R that is still codimensional (2-codimensional) and no horizontality is
required.
Because of this issue, it seems very unlikely to be able to build a grid of 1-codimensional H-
regular surfaces in the case H1. For k ą n, the problem is currently under study.

We know now how currents can be associated to H-regular surfaces and that the H-regularity
is quite a strong condition, to the point that one should wonder whether these condition implies
also H-orientability (or orientability in the Heisenberg sense).
Consider now S a 1-codimensional C1-Euclidean surface in H1, with CpSq “∅ (the set of char-
acteristic points). This implies that S is H-regular. We can define:

Definition 0.4. S a H is H-orientable if and only if D a globally continuous horizontal vector
field W ‰ 0 on S that is H-normal to S.

This notion is invariant for dilations and left-translations and it turns out that

Proposition 0.5. Let S be a 1-codimensional C1-Euclidean surface in H1, with CpSq “ ∅ and
dimHE S “ 2. If S PC2

H, then

S is H-orientable ùñ S is Euclidean-orientable .

We can read this implication in the opposite direction and say that a non Euclidean surface
who satisfies the hypotheses of the proposition is also a not-H-orientable H-regular surface. It
turns out that there exists at least one such surface and so we conclude that not-H-orientable
H-regular surfaces exist.



Then it will make sense to consider Heisenberg currents mod 2 (whose interpretation is to
ignore the orientability (see, for instance, [5]). For such currents it could be possible to discuss
a Plateau Problem as it is for the normal currents.
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