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Orientation preference map and pinwheels
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Orientation preference map and pinwheels
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Receptive profile
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Set of receptive profiles: Fiber structure
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Set of receptive profiles: 1-form

7 / 28



SE(2) geometry: Horizontality and neural connectivity

Horizontal tangent space:

ker λ = span{X1,X2}
X1 = cos(θ)∂x + sin(θ)∂y

X2 =∂θ
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SE(2) geometry: Horizontality and neural connectivity

Horizontal tangent space:

ker λ = span{X1,X2}
X1 = cos(θ)∂x + sin(θ)∂y

X2 =∂θ

[X2,X1] =X3 = − sin(θ)∂x + cos(θ)∂y

Hörmander condition!
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Surface reconstruction
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PART I

Uniqueness in sub-Riemannian
mean curvature flow



Preliminaries: SE(2) sub-Riemannian geometry

Elements:
(x , y , θ) ∈ SE(2), x , y ∈ R, θ ∈ S1

Horizontal plane:
span{X1 = cos(θ)∂x + sin(θ)∂y , X2 = ∂θ}
For u : SE(2)→ R

horizontal gradient: ∇hu = (X1u,X2u)
horizontal divergence:
divh ν = X1ν1 + X2ν2
horizontal unit normal:
νh = ∇hu

|∇hu| = (X1u, X2u)√
(X1u)2+(X2u)2

horizontal Laplacian: ∆hu = X 2
1 u + X 2

2 u
horizontal mean curvature:
Kh = divh(νh) = divh

(
∇hu
|∇hu|

)
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Preliminaries: SE(2) sub-Riemannian geometry

X3 = − sin(θ)∂x + cos(θ)∂y

Elements:
(x , y , θ) ∈ SE(2), x , y ∈ R, θ ∈ S1

Horizontal plane:
span{X1 = cos(θ)∂x + sin(θ)∂y , X2 = ∂θ}
For u : SE(2)→ R

full gradient: ∇u = (X1u,X2u,X3u)
full divergence: div ν = X1ν1 +X2ν2+X3ν3
full unit normal:
ν = ∇u

|∇u| = (X1u, X2u, X3u)√
(X1u)2+(X2u)2+(X3u)2

full Laplacian: ∆u = X 2
1 u + X 2

2 u+X 2
3 u

full mean curvature:
K = div(ν) = div

(
∇u
|∇u|

)
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Preliminaries: SE(2) sub-Riemannian geometry

X3 = − sin(θ)∂x + cos(θ)∂y

Elements: (x , y , θ) ∈ SE(2), x , y ∈ R, θ ∈ S1

Horizontal plane: span{X1 = cos(θ)∂x + sin(θ)∂y , X2 = ∂θ}
For u : SE(2)→ R

full gradient: ∇u = (X1u,X2u,X3u)
full divergence: div ν = X1ν1 + X2ν2+X3ν3
full unit normal: ν = ∇u

|∇u| = (X1u, X2u, X3u)√
(X1u)2+(X2u)2+(X3u)2

full Laplacian: ∆u = X 2
1 u + X 2

2 u+X 2
3 u

full mean curvature: K = div(ν) = div
(

∇u
|∇u|

)
Degenerate!

Non-commutative Lie algebra:

[X1, X2] = −X3 = sin(θ)∂x − cos(θ)∂y

Challenging but satisfies Hörmander condition!
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Preliminaries: Sub-Riemannian mean curvature flow


ut =

2∑
i ,j=1

(
δij −

XiuXju

|∇hu|2
)
Xiju in G × (0,∞)

u = u0 on G × {0}

Characteristic points: |∇hu| =
√

(X1u)2 + (X2u)2 = 0

Global description

BUT...

Not defined when ∇hu = 0!
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Viscosity and vanishing viscosity

Regularized equation

uεt =
2∑

i ,j=1

(
δij −

Xiu
εXju

ε

ε2+|∇huε|2

)
Xiju

ε

uε(., 0) = u0(.)

No characteristic points!

Degenerate equation

vt =
2∑

i ,j=1

(
δij −

XivXjv
|∇hv |2

)
Xijv

v(., 0) = v0(.)

Not defined when ∇hv = 0!
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Previously

Heisenberg group, existence of graph, Capogna-Citti

Heisenberg group, axisymmetricity,
Ferrari-Liu-Manfredi

Difficulties due to characteristic points!

What about general setting?
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Uniqueness in viscosity sense

Theorem (Uniqueness of viscosity solution)

Let v be a Lipschitz continuous viscosity solution to the degenerate
problem and constantly 0 outside a compact set and let uε be the
vanishing viscosity solution. Then for every α ∈ (0, 12) and
0 < T <∞ there exists a constant M = M(u0,T , α) such that

sup
ξ∈SE(2),0≤t≤T

|(v − uε)(ξ, t)| ≤ Mεα,

for all 0 < ε < 1.
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Stability of vanishing viscosity

Unique viscosity solution implies

Corollary (Stability of vanishing viscosity)

For every α ∈ (0, 12) and 0 < T <∞ there exists a constant
M = M(u0,T , α) such that

sup
ξ∈SE(2),0≤t≤T

|(uε1 − uε2)(ξ, t)| ≤ M(ε1 − ε2)α,

for all 0 < ε1, ε2 < 1 and ε2 <
ε1
2 .
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Stability of vanishing viscosity

sup
ξ∈G ,0≤t≤T

∣∣∣(uε1 − uε2)(ξ, t)
∣∣∣ ≤ M(ε1 − ε2)α

sup
ξ∈G ,0≤t≤T

∣∣∣(uε1 − uε2)(ξ, t)
∣∣∣ ≤ M(ε1 − ε2)α

=

sup
ξ∈G ,0≤t≤T

∣∣∣(uε1 − u)(ξ, t)
∣∣∣ ≤ M(ε1)α as ε2 → 0

=⇒
uε1 → v as ε1 → 0

Submitted to The Journal of Geometric Analysis
18 / 28



PART II

Neurogeometry of primary
visual cortex V1



Extension: Orientation-frequency-phase selectivity
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Extended geometry: Horizontality and neural connectivity

Extended 5-dim geometry

Elements: (x , y , θ, ω, φ) ∈ R2 × S1 × R× S1

Horizontal tangent space:

X1 = cos(θ)∂x + sin(θ)∂y

X2 =∂θ

X3 =− sin(θ)∂x + cos(θ)∂y + ω∂φ

X4 =∂ω

ker λ = span{X1,X2,X3,X4}
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Extended geometry: Horizontality and neural connectivity

X1 = cos(θ)∂x + sin(θ)∂y

X2 =∂θ

X3 =− sin(θ)∂x + cos(θ)∂y + ω∂φ

X4 =∂ω

[X3, X4] =− ∂φ
[X1, X2] = sin(θ)∂x − cos(θ)∂y

[X2, X3] =− cos(θ)∂x − sin(θ)∂y
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Extended geometry: Horizontality and neural connectivity

X1 =cos(θ)∂x + sin(θ)∂y

X2 =∂θ

X3 =− sin(θ)∂x + cos(θ)∂y + ω∂φ

X4 =∂ω

[X3, X4] =−∂φ
[X1, X2] = sin(θ)∂x − cos(θ)∂y

[X2, X3] =− cos(θ)∂x − sin(θ)∂y

Hörmander condition!

23 / 28



Extended geometry: Tangent planes
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Extended geometry: Phase locked profiles
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Extended geometry: Phase locked profiles
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Next step

Comparison of simulation results with neurophysiological data

Image completion via horizontal diffusion in the 5-dim
extended geometry
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Thank you!


