Sub-Riemannian Problems on Lie Groups with Applications to Medical Image Processing

## A.P. Mashtakov **TU**/e

EU-Marie Curie FP7-PEOPLE-2013-ITN, MANET TU/e (no. 607643) Supervisors: R. Duits & Bart ter Haar Romeny Collaborators: Y.L. Sachkov, G.R. Sanguinetti, E.J. Bekkers, I. Beschastnyi



MAnET Meeting Helsinki, 8.12.2015 - 9.12.2015

## SR geodesics on Lie Groups in Image Analysis



Crossing structures are disentangled

Restoration of corrupted contours based on model of human vision







## Analysis of Images of the Retina

Diabetic retinopathy --- one of the main causes of blindness.
Epidemic forms: 10% people in China suffer from DR.
Patients are found early --> treatment is well possible.
Early warning --- leakage and malformation of blood vessels.
The retina --- excellent view on the microvasculature of the brain.



Healthy retina

Diabetes Retinopathy with tortuous vessels

Sub-Riemannian problem on SE(2) with given external cost

(with E.J. Bekkers, R. Duits and G. Sanguinetti)

## Data-driven Sub-Riemannian Geodesics in SE(2)



## **PDE-based Approach**

#### 1. HJB equation for wavefront propagation

For 
$$n = 1, 2, ...,$$
 and  $r \in [n\epsilon, (n+1)\epsilon]$ :  

$$\frac{\partial W_{n+1}^{\epsilon}}{\partial r}(g, r) = 1 - \mathcal{C}^{-1}(g)\sqrt{\left(\xi^{-2}|\mathcal{A}_{1}W_{n+1}^{\epsilon}(g, r)|^{2} + |\mathcal{A}_{2}W_{n+1}^{\epsilon}(g, r)|^{2}\right)},$$

$$W_{n+1}^{\epsilon}(g, n\epsilon) = W_{n}^{\epsilon}(g, n\epsilon),$$
 for  $g \neq e,$ 

$$W_{n+1}^{\epsilon}(e, n\epsilon) = 0,$$
Initialization  $(n = 0)$ :  $W_{1}^{\epsilon}(g, 0) = \delta_{e}^{M}(g)$ 

- 2. Distance map  $d(e,g) = \lim_{\epsilon \to 0} \lim_{n \to \infty} W_{n+1}^{\epsilon}(g,(n+1)\epsilon)$
- 3. Minimizers by backward integration of the Hamiltonian system



## Numerical Verification for C=1



Sub-Riemannian problem on SO(3) with cuspless spherical projection constraint (with R. Duits, Y.L. Sachkov and I. Beschastnyi)

#### Sub-Riemannian Geodesics on SO(3)



Aim: data-driven SR geodesics on **SO(3)** for detection and analysis of vessel tree in spherical images of retina, to reduce distortion.



Spherical extension of cortical based model of perceptual completion on retinal sphere

#### Problem Pcurve(S<sup>2</sup>) and Pmec(SO(3))



$$\dot{R} = -u_1 R A_2 + u_2 R A_1,$$
  

$$R(0) = \text{Id}, \ R(t_1) = R_1,$$
  

$$l(R(\cdot)) = \int_0^{t_1} \sqrt{\xi^2 u_1^2 + u_2^2} \, dt \to \min,$$
  

$$R \in \text{SO}(3), \quad (u_1, u_2) \in \mathbb{R}^2$$

Spherical projection:  $SO(3) \ni R \mapsto Re_1 \in S^2$ 



#### SR geodesics in SO(3) with cuspless spherical projections



- Lift  $P_{\text{curve}}(S^2)$  to sub-Riemannian problem on SO(3);
- Hamiltonian system of PMP;
- Classification by different dynamic of vertical part on elliptic (  $0 < \xi < 1$  ), linear ( $\xi = 1$ ) and hyperbolic ( $\xi > 1$ ) cases;
- Explicit expressions for SR-geodesics in both SR-arclength and spherical arclength parameterization;
- Evaluation of first cusp time and description of reachable end conditions;
- Comparison cusp-surfaces and wavefronts w.r.t. SE(2)

Sub-Riemannian problem on SE(3) with cuspless spatial projection constraint (with R. Duits, A. Ghosh and T.C.J. Dela Haije)

### Problem **Pcurve(R<sup>3</sup>)**: Shortest Path on R<sup>3</sup> x S<sup>2</sup>

Given 
$$\xi > 0$$
,  $\mathbf{x}_i \in \mathbb{R}^3$ ,  $\mathbf{n}_i \in S^2$ ,  $i \in \{0, 1\}$ .  
Find a smooth curve  $\mathbf{x} \in C^{\infty}([0, L], \mathbb{R}^3)$  s.t.  $\mathbf{x}(0) = \mathbf{x}_0, \mathbf{x}(L) = \mathbf{x}_1 \in \mathbb{R}^3$ ,  $\mathbf{x}'(0) = \mathbf{n}_0, \mathbf{x}'(L) = \mathbf{n}_1 \in S^2$ , and  $E(\mathbf{x}) := \int_0^L \sqrt{\xi^2 + \kappa^2(s)} \, \mathrm{d}s \to \min$ , where  $\kappa(s) = \|\mathbf{x}''(s)\|$ .

## SR-geodesics on SE(3) with cuspless spatial projections

X

#### **Results:**

- Lift  $P_{\text{curve}}(\mathbb{R}^3 \times S^2)$  to sub-Riemannian problem on SE(3);
- Hamiltonian system of PMP;
- Liouville integrability of the Hamiltonian system;
- Explicit expressions for SR-geodesics in spatial arclength parameterization;
- Evaluation of first cusp time;
- Admissible boundary conditions reachable by cuspless geodesics;
- Geometrical properties: bounds on torsion, planarity conditions, symmetries;
- Numerical investigation of absence of conjugate points;
- Numerical solution to the boundary value problem.

# Thank you for your attention!