Stable area-stationary surfaces in sub-Riemannian geometry

Matteo Galli

Dipartimento di Matematica Università di Bologna

Mid-Term Review meeting of MAnET project Helsinki, December 8, 2015

In this talk I want to present

- 1. the regularity of critical points of the sub-Riemannian (SR) area functional in 3-dimensional contact SR manifolds
- 2. the second order minima of the SR area functional in \mathbb{H}^1
- 3. the area-minimizing property of stable minimal graph in \mathbb{H}^n

These results are contained in

- ► M. Galli, M. Ritoré, Area-stationary and stable surfaces of class C¹ in the sub-Riemannian Heisenberg group H¹, Adv. Math., 2015
- M. Galli, M. Ritoré, Regularity of C¹ surfaces with prescribed mean curvature in three-dimensional contact sub-Riemannian manifolds, Calc. Var. and PDE, 2015
- M. Galli, Regularity of Lipschitz graphs with prescribed mean curvature in three-dimensional contact sub-Riemannian manifolds, preprint
- ▶ G. Citti, M. Galli, *The area minimizing property of stable minimal graphs in* ℝⁿ, preprint

In this talk I want to present

- 1. the regularity of critical points of the sub-Riemannian (SR) area functional in 3-dimensional contact SR manifolds
- 2. the second order minima of the SR area functional in \mathbb{H}^1
- 3. the area-minimizing property of stable minimal graph in \mathbb{H}^n

These results are contained in

- ► M. Galli, M. Ritoré, Area-stationary and stable surfaces of class C¹ in the sub-Riemannian Heisenberg group H¹, Adv. Math., 2015
- M. Galli, M. Ritoré, Regularity of C¹ surfaces with prescribed mean curvature in three-dimensional contact sub-Riemannian manifolds, Calc. Var. and PDE, 2015
- M. Galli, Regularity of Lipschitz graphs with prescribed mean curvature in three-dimensional contact sub-Riemannian manifolds, preprint
- ▶ G. Citti, M. Galli, *The area minimizing property of stable minimal graphs in* ℍⁿ, preprint

1. Contact sub-Riemannian manifold $(M, \mathcal{H}, g_{\mathcal{H}})$

- M: (2n+1)-dimensional manifold
- ω: contact 1-form
- $\mathcal{H} = \text{Ker}(\omega)$: horizontal distribution
- ► *J*: holomorphic involution on *H*
- $g_{\mathcal{H}}$: positive definite metric on \mathcal{H} ,
- ► *T*: Reeb vector field, defined by $\omega(T) = 1$ and $\mathcal{L}_T \omega = 0$

 $g_{\mathcal{H}}$ is extended to a Riemannian metric g by making T unitary and orthogonal to \mathcal{H}

1.1 The geometry of C^1 surfaces in M

 $\Sigma \subset M$ immersed surface of class C^1 . Define

$$\Sigma_{0} := \{ p \in \Sigma; T_{p}\Sigma = \mathcal{H}_{p} \}$$

$$N :$$

$$N_{H} := N - g(N, T)T$$

$$\nu_{H} := \frac{N_{H}}{|N_{H}|}$$

$$Z := J(\nu_{H}) \in T(\Sigma - \Sigma_{0})$$

(singular set), (Riemannian unit normal), (horizontal projection of N), (horizontal unit normal in $\Sigma - \Sigma_0$), (characteristic field),

1.2 The sub-Riemannian area and the mean curvature

1. Area: *N* Riemannian normal, N_H horizontal projection of *N*, $d\Sigma$ Riemannian measure of Σ in (M, g)

$$A(\Sigma) := \int_{\Sigma} |N_H| \, d\Sigma.$$

2. Mean curvature: $\Sigma = \partial E \subset \Omega$ Lipschitz, Σ has mean curvature f if it is a critical point of

$$A(\Sigma \cap B) - \int_{E \cap B} f \, dv,$$

for any bounded open set $B \subset \Omega$, dv Riemannian volume element on M.

3. If $\Sigma \in C_h^2$ the mean curvature *H* of Σ coincides with

$$H:=-\operatorname{div}_{\Sigma}^{h}(\nu_{H}).$$

1.2 The sub-Riemannian area and the mean curvature

1. Area: *N* Riemannian normal, N_H horizontal projection of *N*, $d\Sigma$ Riemannian measure of Σ in (M, g)

$$A(\Sigma) := \int_{\Sigma} |N_H| \, d\Sigma$$

2. Mean curvature: $\Sigma = \partial E \subset \Omega$ Lipschitz, Σ has mean curvature f if it is a critical point of

$$A(\Sigma\cap B)-\int_{E\cap B}f\,dv,$$

for any bounded open set $B \subset \Omega$, dv Riemannian volume element on M.

3. If $\Sigma \in C_h^2$ the mean curvature *H* of Σ coincides with

$$H := -\operatorname{div}_{\Sigma}^{h}(\nu_{H}).$$

1.2 The sub-Riemannian area and the mean curvature

1. Area: *N* Riemannian normal, N_H horizontal projection of *N*, $d\Sigma$ Riemannian measure of Σ in (M, g)

$$A(\Sigma) := \int_{\Sigma} |N_H| \, d\Sigma$$

2. Mean curvature: $\Sigma = \partial E \subset \Omega$ Lipschitz, Σ has mean curvature f if it is a critical point of

$$A(\Sigma\cap B)-\int_{E\cap B}f\,dv,$$

for any bounded open set $B \subset \Omega$, dv Riemannian volume element on M.

3. If $\Sigma \in C_h^2$ the mean curvature *H* of Σ coincides with

$$H:=-\operatorname{div}_{\Sigma}^{h}(\nu_{H}).$$

1.3 Previous results

Few regularity results:

- ► Cheng-Hwang-Yang '09: the regular part $\Sigma \Sigma_0$ of a minimal graph of class C^1 in \mathbb{H}^1 , with $g(N, T) \neq 0$, is foliated by horizontal straight lines
- Capogna-Citti-Manfredini '09, Barbieri-Citti '11: minimal regular Lipschitz graphs that are limits of Riemannian minimal graphs in *M*, *n* = 1, are foliated by horizontal smooth curves
- Capogna-Citti-Manfredini, '09: minimal regular Lipschitz graphs that are limits of Riemannian minimal graphs in Hⁿ, n > 1, are smooth

Many examples of complete area-minimizing surfaces with low regularity:

▶ (Cheng-Hwang-Yang '07, Barone Adesi-Serra Cassano-Vittone '07, Ritoré '09) Plenty of $C^{0,1}$ minimizers, depending on an arbitrary monotone function $f : \mathbb{R} \to \mathbb{R}$

These examples are smooth in the regular part of Σ (where ν_h is continuous)

1.3 Previous results

Few regularity results:

- ► Cheng-Hwang-Yang '09: the regular part $\Sigma \Sigma_0$ of a minimal graph of class C^1 in \mathbb{H}^1 , with $g(N, T) \neq 0$, is foliated by horizontal straight lines
- Capogna-Citti-Manfredini '09, Barbieri-Citti '11: minimal regular Lipschitz graphs that are limits of Riemannian minimal graphs in *M*, *n* = 1, are foliated by horizontal smooth curves
- Capogna-Citti-Manfredini, '09: minimal regular Lipschitz graphs that are limits of Riemannian minimal graphs in Hⁿ, n > 1, are smooth

Many examples of complete area-minimizing surfaces with low regularity:

▶ (Cheng-Hwang-Yang '07, Barone Adesi-Serra Cassano-Vittone '07, Ritoré '09) Plenty of $C^{0,1}$ minimizers, depending on an arbitrary monotone function $f : \mathbb{R} \to \mathbb{R}$

These examples are smooth in the regular part of Σ (where v_h is continuous)

Let $\Omega \subset M$ be a domain, n = 1, and let $E \subset \Omega$ be a set of prescribed mean curvature $f \in C^k(\Omega)$ with Euclidean Lipschitz boundary $\partial E = \Sigma$. If Σ is locally a Lipschitz regular graph, then the characteristic curves are of class C^{k+2} .

Idea of the proof

We localize the first variation of the area along a characteristic curve

Let $\Omega \subset M$ be a domain, n = 1, and let $E \subset \Omega$ be a set of prescribed mean curvature $f \in C^k(\Omega)$ with Euclidean Lipschitz boundary $\partial E = \Sigma$. If Σ is locally a Lipschitz regular graph, then the characteristic curves are of class C^{k+2} .

Idea of the proof

We localize the first variation of the area along a characteristic curve

3. The Stability operator

A minimal hypersurface $\Sigma \subset M$, with $\Sigma_0 = \emptyset$, is stable (resp. strictly stable) if and only if

$$\mathcal{I}(v) = - \int\limits_{\Sigma} v \, \mathcal{L}(v) \left(|N_H| d\Sigma
ight) \geq (ext{resp.} >) 0$$

for any non-trivial $v \in C_h^2(\Sigma)$, where \mathcal{L} is the second order linear sub-elliptic operator

$$\mathcal{L}(v) := \frac{d}{dt} \bigg|_{t=0} H_t = \Delta^h_{\Sigma}(v) + 2 \frac{\langle N, T \rangle}{|N_H|} \langle \nabla^h_{\Sigma}(v), J(v_h) \rangle + qv.$$

In the Heisenberg group \mathbb{H}^n

$$q = |\sigma|^2 + 4Z \left(\frac{\langle N, T \rangle}{|N_H|}\right) + (2n+2) \left(\frac{\langle N, T \rangle}{|N_H|}\right)^2$$

The key point to write the operator \mathcal{L} is to improve the "a priori" regularity of some geometric quantities along the characteristic direction

Proposition (G-Ritoré)

The function $v = g(N,T)/|N_H|$ is smooth when restricted to characteristic curves in a C^1 minimal surface $\Sigma \subset \mathbb{H}^1$.

Proposition (Citti-G)

A minimal C_h^2 graph $\Sigma \subset \mathbb{H}^n$, n > 1, is smooth.

3.2 Stable area-stationary surfaces and the Bernstein problem

Theorem

Let $\Sigma \subset \mathbb{H}^1$ be a complete oriented stable minimal surface of class C^1 without singular points. Then Σ is a vertical plane.

A consequence is the following Bernstein Theorem for regular graphs of C^1 functions

Theorem

Let $\Sigma \subset \mathbb{H}^1$ be a complete locally area-minimizing regular graph of a C^1 function. Then Σ is a vertical plane.

Remark

These results are well known for C^2 surfaces in \mathbb{H}^1 (Barone Adesi-Serra Cassano-Vittone '07, Danielli-Garofalo-Nhieu-Pauls '07, '10, Hurtado-Ritoré-Rosales '10).

3.2 Stable area-stationary surfaces and the Bernstein problem

Theorem

Let $\Sigma \subset \mathbb{H}^1$ be a complete oriented stable minimal surface of class C^1 without singular points. Then Σ is a vertical plane.

A consequence is the following Bernstein Theorem for regular graphs of C^1 functions

Theorem

Let $\Sigma \subset \mathbb{H}^1$ be a complete locally area-minimizing regular graph of a C^1 function. Then Σ is a vertical plane.

Remark

These results are well known for C^2 surfaces in \mathbb{H}^1 (Barone Adesi-Serra Cassano-Vittone '07, Danielli-Garofalo-Nhieu-Pauls '07, '10, Hurtado-Ritoré-Rosales '10).

3.2 Stable area-stationary surfaces and the Bernstein problem

Theorem

Let $\Sigma \subset \mathbb{H}^1$ be a complete oriented stable minimal surface of class C^1 without singular points. Then Σ is a vertical plane.

A consequence is the following Bernstein Theorem for regular graphs of C^1 functions

Theorem

Let $\Sigma \subset \mathbb{H}^1$ be a complete locally area-minimizing regular graph of a C^1 function. Then Σ is a vertical plane.

Remark

These results are well known for C^2 surfaces in \mathbb{H}^1 (Barone Adesi-Serra Cassano-Vittone '07, Danielli-Garofalo-Nhieu-Pauls '07, '10, Hurtado-Ritoré-Rosales '10).

Let Σ be a $C_h^{2,\alpha}$ minimal graph in \mathbb{H}^n . We assume that $\Sigma_0 = \emptyset$ and Σ is strictly stable in a domain $\Omega \subset \Sigma$. Then Σ is locally area-minimizing (there exists a tubular neighborhood U of Ω such that for any C_h^1 graph $S \subset U$, $\partial\Omega = \partial S$, we have $A(\Omega) \leq A(S)$ or $\Omega = S$).

Idea of the proof

Using Schauder local estimates of \mathcal{L} , we construct a calibration of Σ in U that implies the area-minimizing property

Let Σ be a $C_h^{2,\alpha}$ minimal graph in \mathbb{H}^n . We assume that $\Sigma_0 = \emptyset$ and Σ is strictly stable in a domain $\Omega \subset \Sigma$. Then Σ is locally area-minimizing (there exists a tubular neighborhood U of Ω such that for any C_h^1 graph $S \subset U$, $\partial\Omega = \partial S$, we have $A(\Omega) \leq A(S)$ or $\Omega = S$).

Idea of the proof

Using Schauder local estimates of \mathcal{L} , we construct a calibration of Σ in U that implies the area-minimizing property

Thanks for your attention!!!