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Introduction
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Objectives

Mathematical models for low-level vision to perform:
m (i) Amodal completion (inpainting), enhancement;

m (ii) Visual perception of geometrical optical illusion.

Figure: Inpainting, enhancement and a GOI



Functional architecture of the primary visual cortex
Primary visual cortex (V1):

Elaborates information from
the retina

m Retinotopic Structure; I

m Hypercolumnar Structure . b
Connectivity: T =SE=8
< A S e
. - — -_— e
m Intra-cortical = = =e =

. S =

m Long range connection s>




Sub-Riemannian mean curvature flow for image processing

O@000000

Cortical based Model?

V1 as rototranslation group SE(2)=R? x S
m (x,y) € R? represents a position on the retina;
m If ¥(t) = (x(t), y(t)) is a visual stimulus on the retina, the
hypercolumn over (x(t), y(t)) selects the tangent direction 6

m The tangent vectors to any lifted curve
~v(t) = (x(t), y(t),0(t)) are a linear combination of:

cost 0
Xi=| senf | Xo=1 0
0 1

B “lifted curves " with tangent direction along X3 = [X1, X2]

G. Citti, A. Sarti, J. Math. Imaging Vision 24 (2006)
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m The connectivity model is given by a 2-dimensional subspace
of the tangent space of SE(2) : X1 e X, € HM C T(SE(2))

m Then we define a metric on HM:

HOle + OQXQHg =4/ ozf + a%

m Its Riemannian completion is:

i Xy + cp Xo + 60&3)(3”g6 = \/Oé% + CM% + 520%
obtaining the previous expression for ¢ — 0.
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Mean curvature flow

m Reconstruction of perceptual phenomena and modeling of the
visual signal through mean curvature flow.

m Sub-Riemannian mean curvature flow
2 X0ux0
up= 3, <5iJ - |'vL;uj|2u> XiOXjOu
ij=1
u(+,0) = u
m S. Osher and J.A. Sethian?; L.C. Evans and J. Spruck3.

m Theorem: There exist viscosity solutions uniformly
Lipshitz-continuous to the mean curvature flow in SE(2)*.

2 J.Computational Phys. 79, (1988);
®J. Differential Geom. 33 (1991)
“Citti, F., Sanguinetti, Sarti, Accepted by SIAM J. Imaging Sciences (2015);
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Proof

3 XF XF
uy = .Zl ((S,J WLJW—FU&/J) )<e)<6
ij=
u(+,0) = up

We look for solutions u“™° and uniform estimates for the gradient®

H UG,T,U(‘

t)l coomoxsty < lltoll goo(moxs1)

IVEUST (-, t)|| coomox sty < [ VEUO| £oo (r2 51

Then €, 7,0 — 0 to recover a vanishing viscosity solution in the
space of Lipshitz functions to the initial problem.

®Capogna, Citti, Communications in Partial Diff. Equations V. 34 (2009);
LadyZzenskaja, Solonnikow, Ural'ceva, American Mathematical Soc.(1988)
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Image Processing

m The missing part is a
minimal surface.

m We lift and we let the
image evolve through
mean curvature flow

m the gray-levels are lifted to
a function v defined on
the surface.

m Laplace-Beltrami of v is
used to complete the
color;
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Results®
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Figure: From left to right: The original image, The image processed in
[6], Inpainting performed with our algorithm.

6Comparison made with: Boscain, Chertovskih, Gauthier, Remizov, SIAM J.
Imaging Sciences; (2014)
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Results’

Figure: From left to right: the original image, the image processed
through CED-OS, Enhancement with our algorithm.

"Comparison made with: Duits, Franken, Quarterly on Applied Mathematics
68(2); (2010)
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Geometrical-optical illusions and literature

Geometrical-optical illusions are situations in which there is an
awareness of a mismatch of geometrical properties between an
item in object space and its associated percept. (Oppel &)

8\Westheimer, Vision Research 48; (2008)
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History of the problem

Ehm, Wackermann®:
m Model of Hering-type illusions as geodesics
m Regression to right angles

m Background without crossing lines
10

Yamazaki, Yamanoi*":
m Use of deformations for Delbouf illusion
Objectives:
m To overcome the limitations

m To take into account the cortical behaviour

°J. of Mathematical Psychology; (2013)
10 Bchaviormetrika v.26; (1999)
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The idea under the model

The deformation is a map: ¢ : (R?, (pjj)ij=1.2) — (R?, ld2)
We would like to:

m recover it as a displacement field {a(x,y)}( y)er?

m study how the metric (p;j)i j=1, changes

s
1111 e
bty

Figure: The illusion is interpreted as an elastic deformation (strain)
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What is p;?

The strain theory on R? is induced by the cortical structure:

B ﬂex — (Eno=5)7) cos?  sinflcosd d0
p= 0 P sinfcosf  sin’@

Figure: The maximum activity is registered at 0
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From strain to displacement

Then from the infinitesimal strain theory we have:
mp=(Ve)" - (V) where (Vo) is the deformation gradient
m From ¢(x,y) = @(x,y) + Id we obtain

(p— Id)(x,y) = Vi(x,y) + (Vi(x,y))"
m Differentiating and substituting:

{ Au = —0x(p22) + Ox(p11) + 20y (p12) :== 1
Av = —0y(p22) + 9y(p11) + 20x(p12) := a2

m Solving numerically the Poisson problems we recover the
displacement field {a(x, y)}(x y)er-
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Figure: Perceived deformation for the Hering illusion.
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Work in Progress

m Interpretation of deformed lines as geodesic in the R? x S!

m Completion model and strain model applied to the

Poggendorff illusion:



