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Objectives 
  

•  The neurogeometry of the visual cortex  

•  Models of cortical connectivity, with different stochastic kernels  

•  Spectral analysis of connectivity matrix 

•  Simulations (Kanizsa figures and retinal images). 

Methods and development of work: 
  

•  Mathematical models of the primary visual cortex 

•  Mathematical models of visual perception 
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     Individuation of perceptual units: 
     the association fields 

 

Field et al, 1993 3 



Mathematical models of  
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     The neurogeometry of V1 
 

    Hypercolumnar structure 

Receptive profile of a simple cell and its 
representation as a even-symmetric and odd-
symmetric Gabor filters. 

Hubel-Wiesel, 1965 

Daugman, 1985 

ϕ(x, y,θ ) = 1
2πσ 2 e

[−( !x
2+ !y2 )
σ 2

+i !y
σ
]

!x = xcos(θ )+ ysin(θ )
!y = −xsin(θ )+ ycos(θ )
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•  Simple cells are modeled with Gabor filters and represent a group: 

!
X1 = (cosθ, sinθ, 0)

!
X2 = (0, 0,1)

!
X3 = (−sinθ, cosθ, 0)



Sarti Citti, 2006 

Output of simple cells: 
 
 
 
 
 
Lifting: nonmaximal suppression 
 
 
 
 
 
 
 

 

h(x, y,θ ) = ϕ x,y,θ (x
', y' )I(x ', y' )∫ dx ' dy'

maxθ (h(x, y,θ )) = h(x, y,θ )
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!
X1 = (cosθ, sinθ, 0)

!
X2 = (0, 0,1)

X1 = cos(θ )∂x + sin(θ )∂y X 2 = ∂θ

!
X1,
!
X2,
!
X3 generator of the tangent space.  

Citti-Sarti, 2006 

X3 = [X2,X1]= −sin(θ )∂x + cos(θ )∂y
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    Differential model of Citti-Sarti 
 

Citti-Sarti, 2006 

X1 = cos(θ )∂x + sin(θ )∂y

X 2 = ∂θ

γ ' (t) =
!
X1(γ )+ k

!
X2 (γ )

γ (0) = (x0, y0,θ0 )
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The Fokker Planck operator has a nonnegative fundamental solution   
that satisfies: 
 
  

 
 
 

X1Γ1((x, y,θ ), (x
', y',θ ' ))+σ 2X22Γ1((x, y,θ ), (x

', y',θ ' )) = δ(x, y,θ )

Γ1

Sanguinetti Citti Sarti, 2008 
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The Sub-Riemannian Laplacian operator has a nonnegative fundamental 
solution        that satisfies: Γ2

σ 2
1X11Γ2 ((x, y,θ ), (x

', y',θ ' ))+σ 2
2X22Γ2 ((x, y,θ ), (x

', y',θ ' )) = δ(x, y,θ )

ω2
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Bosking et al, 1997 

The connectivity map 
measured by Bosking 
in tree shrew:  
 

Maximum values along     dimension of the connectivity kernels associated to the 
fundamental solution of a FP (left) and SRL equations (right).  
 

θ
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Affinity Matrix 

ω((xi, yi,θi ), (x j, yj,θ j ))h(x j, yj,θ j )
j=1

N

∑

Ai, j =ω((xi, yi,θi ), (x j, yj,θ j ))

Propagation of                  to close cells: h(xi, yi,θi )
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Individuation of perceptual units: Kanizsa figure 
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1.  Define the affinity matrix        from the approximated connectivity 

kernel. 

2.   Solve the eigenvalue problem                     , where the order of i is such 
that      is decreasing.  

3.   Find and represent on the segments the eigenvector       associated to its 
largest eigenvalue.  

  

Ai, j

Ai, jui = λiui
λi

u1

Numerical algorithm 
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First eigenvector of the affinity matrix, 
using the fundamental solutions of FP 
and SRL equations.  
 

The affinity matrix is updated 
removing the detected perceptual 
unit; the first eigenvector of the 
new matrix is visualized. 
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(a) 

(b) 

(c) 

(d) 

In red the first eigenvectors 
of the affinity matrix using 
both connectivity kernel.  
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F., Citti, Sarti: “Local and global 
gestalt laws: A neurally based 
spectral approach”, submitted to 
Neural Computation, 2015. 
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Individuation of perceptual units: 
 retinal images 

 
  Analyzed problems:  
 
 
         bifurcation                              crossing                      disconnected vessels 

  
 
 

In collaboration with TU/e 
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�  In presence of an input stimuli, the visual cortex codifies the features  
    of position and orientation. 
 
 
 
 
 
 
 
  

�  The proposed method models the connectivity as the fundamental solution 
of the Fokker-Planck equation. 

 
     
 
 

Image patch: crossing Oriented segments 
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�  In order to measure the distances between intensities we introduce the 
kernel       : 

 
�  The final connectivity kernel can be written as the product of the two 

components: 

�  Starting from that connectivity kernel it is possible to extract perceptual 
units from images by means of spectral analysis of suitable affinity matrix: 

 
 

 
 
 

ω3

ω3( fi, f j ) = e
(−1
2
(
fi− f j
σ 2

))2

ω ((xi, yi,θi, fi ), (x j, yj,θ j, f j )) =ω1((xi, yi,θi ), (x j, yj,θ j ))ω3( fi, f j )
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Aij =ω ((xi, yi,θi, fi ), (x j, yj,θ j, f j ))
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Normalized Spectral Clustering 
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1.  After defining the affinity matrix      from the connectivity kernel 

2.  We evaluate the normalized affinity matrix             where      is the diagonal 
degree matrix having elements:           

3.  Solve the eigenvalue problem: 

4.  Define the thresholds        and evaluate the largest integer K such that 
      for              

A

P = D−1A

Pum = λmum

ε,τ λτ
m >1−ε

Shi Malik, 2000 
Meila Shi, 2001 5 10 15
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Normalized Spectral Clustering 
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5.  Define the clusters from the       eigenvector 

6.  Find and remove the clusters that contain less than a minimum cluster size 
elements. 

uK

Perceptual units Image patch  
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F., Abbasi, Romeny, Sarti: “Analysis of Vessel Connectivities in Retinal Images by Cortically Inspired Spectral 
Clustering”, submitted to JMIV, 2015. 



Conclusion 

�  We have presented a neurally based model for figure-ground segmentation 
using spectral methods. 

•  Different connectivity kernels are compatible with the functional 
architecture of V1, we have compared their properties and modelled them 
as fundamental solution of Fokker Planck, Sub-Riemannian Laplacian 
equations.  

•  With this model we have identified perceptual units of different Kanizsa 
figures and retinal images. 

•  We have shown how this can be considered a good quantitative model for 
the constitution of perceptual units.  
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•  Our method represents some limitations at blood vessels with high 

curvature. These structures will be analyzed in an higher dimensional 
group (Engel group) adding other features. 

 
•   Other images containing tree structures will be analyzed. 

•  We will compare the results obtained with this model with functional 
fMRI data, that represent measurements of cortical neural activity.  

Future work 



Thanks for your attention 
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